Abstract. Reliable information on water flow dynamics and water losses via irrigation on irrigated agricultural fields is important to improve water management strategies. We investigated the effect of season (wet season and dry season), irrigation management (flooded and non-flooded), and crop diversification (wet rice, dry rice, and maize) on soil water flow dynamics and water losses via evaporation during plant growth. Soil water was extracted and analysed for the stable isotopes of water (δ2H and δ18O). The fraction of evaporation losses were determined using the Craig–Gordon equation. For dry rice and maize, water in shallow soil layers (0 to 0.2 m) was more isotopically enriched than in deeper soil layers (below 0.2 m). This effect was less pronounced for wet rice but still evident for the average values at both soil depths and seasons. Soil water losses due to evaporation decreased from 40 % at the beginning to 25 % towards the end of the dry season. The soil in maize fields showed stronger evaporation enrichment than in rice during that time. A greater water loss was encountered during the wet season, with 80 % at the beginning of the season and 60 % at its end. The isotopic enrichment of ponding surface water due to evaporation was reflected in the shallow soils of wet rice. It decreased towards the end of both growing seasons during the wet and the dry season. We finally discuss the most relevant soil water flow mechanisms, which we identified in our study to be those of matrix flow, preferential flow through desiccation cracks, and evaporation. Isotope data supported the fact that unproductive water losses via evaporation can be reduced by introducing dry seasonal crops to the crop rotation system.
Read full abstract