Evidence of food uptake in the photosynthetic genus Dinophysis comes solely from the presence of food vacuoles, as no photosynthetic cells have ever been observed in the act of feeding. We examined the feeding ecology of D. acuminata in natural populations and under laboratory conditions. Using depth‐integrated sampling of the water column, we determined the frequency of food vacuolated cells at 2‐h intervals over a 24‐h period in a shallow marine embayment. Food vacuoles in preserved cells were enumerated using Nomarski differential interference contrast microscopy; ultrastructural characters were recorded by transmission electron microscopy. A peak in the feeding activity was observed toward dusk for an abundant June population, with 26% of cells with at least one food vacuole. Mechanisms of concurrent carbon acquisition were evident from the presence of chloroplasts with starch grains and food vacuoles within the same cell. Vacuole content could not be identified. In a preliminary 2‐wk long simulated grazing experiment, a mixture of two hypothesized preys, Rhodomonas salina and Dunaliella tertiolecta, was offered to D. acuminata; the Dinophysis populations decreased steadily and at the same rate, whether food was present or not. The evaluation of the food vacuole frequency will be repeated in the coming season to verify the observed pattern, while grazing experiments will include a variety of food items and incubation conditions. Our current inability to successfully culture any photosynthetic Dinophysis limits ecophysiological approaches, either at the population or cellular level, to manipulation of field samples.Supported by National Institutes of Health Grant GM62126‐01A1.
Read full abstract