Study on fish sex differentiation is important both from academic and practical aspects. Foxl2 and Dmrt1 are important transcription factors that should be involved in fish gonadal differentiation, but there is still no direct evidence to clarify their protein functions. Olive flounder Paralichthys olivaceus, an important mariculture fish in China, Japan, and Korea, shows sex-dimorphic growth. In this study, the Foxl2 and Dmrt1 proteins were detected in granulosa cells of the ovary and Sertoli cells of the testis, respectively, showing significant sex-dimorphic expression patterns. Then, bioactive high-purity Foxl2 and Dmrt1 recombinant proteins were obtained in vitro. Furthermore, effects of the recombinant Foxl2 and Dmrt1 during gonadal differentiation period were evaluated by intraperitoneal injection in juvenile fish. Compared with the control group, the male rate in the Dmrt1 group increased from 0 % to 82 %, showing for the first time in fish that the recombinant Dmrt1 could alter the sex phenotype. In addition, transcription levels of cyp19a and its transcription factors also changed after the recombinant Foxl2 and Dmrt1 injection. These findings reveal that Foxl2 and Dmrt1 are vital regulators for fish gonadal differentiation by regulating cyp19a expression, and also provide a new approach for sex control in fish aquaculture.