AbstractPhytophthora root and crown rot (Phytophthora cryptogea) on gerbera is difficult to manage because most gerbera cultivars are susceptible to P. cryptogea. This study was conducted in order to determine the in vivo (pot experiment) efficacy of some fungicides and biofungicides. In pot experiments, fungicides were applied 7 days after inoculation with P. cryptogea, while biofungicide was applied 7 days before inoculation. In this study, soil drenches of five fungicides were tested. “Ametoctradin+dimethomorph (100 ml/day),” “mandipropamid+difenoconazole (60 ml/day),” “propamocarb+fosetyl‐Al (200 ml/day),” “mancozeb+metalaxyl‐M (250 g/day)” and “azoxystrobin+difenoconazole (100 ml/day)” active substances were used. Similarly, one biofungicide Bacillus amyloliquefaciens syn. MBI 600 (50 g/100 L) was applied by soil drenching. Efficacy of treatments was assessed according to the percentage of the root system which was visibly rotten at the end of the experiment. Root and crown rot severity was rated on a scale of 0 = 0% root system necrotic, 1 = 1%‐25% necrotic, 2 = 26%‐50% necrotic, 3 = 51%‐75% necrotic and 4 = 76%‐100% necrotic from 12 to 21 days. In this experiment, “azoxystrobin 200 g/L + difenoconazole 125 g/L” exhibited the highest efficacy against P. cryptogea with a ratio of 43.75%. The other fungicides and biofungicides ametoctradin 300 g/L + dimethomorph 225 g/L, mandipropamid 250 g/L + difenoconazole 250 g/L, propamocarb 530 g/L + fosety‐Al 310 g/L, mancozeb 64%+metalaxyl‐M 4% and Bacillus amyloliquefaciens syn. MBI 600 11% were ineffective. Importance should be given to management strategies of P. cryptogea of and more experiments should be carried out for a better understanding of the use of registered fungicides and biofungicides.