Background: Pulmonary arterial hypertension (PAH) is a severe disease with poor prognosis and high mortality, lacking simple and sensitive diagnostic biomarkers in clinical practice. This study aims to identify novel diagnostic biomarkers for PAH using genomics research. Methods: We conducted a comprehensive analysis of a large transcriptome dataset, including PAH and inflammatory response genes (IRGs), integrated with 113 machine learning models to assess diagnostic potential. We developed a clinical diagnostic model based on hub genes, evaluating their effectiveness through calibration curves, clinical decision curves, and ROC curves. An animal model of PAH was also established to validate hub gene expression patterns. Results: Among the 113 machine learning algorithms, the Lasso + LDA model achieved the highest AUC of 0.741. Differential expression profiles of hub genes CTGF, DDR2, FGFR2, MYH10, and YAP1 were observed between the PAH and normal control groups. A diagnostic model utilizing these hub genes was developed, showing high accuracy with an AUC of 0.87. MYH10 demonstrated the most favorable diagnostic performance with an AUC of 0.8. Animal experiments confirmed the differential expression of CTGF, DDR2, FGFR2, MYH10, and YAP1 between the PAH and control groups (p < 0.05); Conclusions: We successfully established a diagnostic model for PAH using IRGs, demonstrating excellent diagnostic performance. CTGF, DDR2, FGFR2, MYH10, and YAP1 may serve as novel molecular diagnostic markers for PAH.