Objective To acquire cerebral blood flow (CBF) in patients with severe intracranial atherosclerotic stenosis with enhanced pseudo-continuous arterial spin labeling (e-pCASL) and compare it with the findings of dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC PWI) and pseudo-continuous arterial spin labeling (pCASL). Methods A total of 39 consecutive patients with severe intracranial atherosclerotic stenosis were enrolled in this study. All these patients underwent e-pCASL, pCASL, and DSC PWI. Blood supply territory of the stenosed artery was outlined as region of interest (ROI) and a mirror ROI was applied. Ratios of CBF were calculated as value of ROI/value of mirror ROI. SNK variance analysis was conducted to compare the CBF values of three persufion methods. Factorial analysis of variance and Pearson were employed to analysis the difference and the correlation of e-pCASL CBF ratio, pCASL CBF ratio, and DSC PWI relative cerebral blood flow(rCBF) ratio. Results The e-pCASL CBF ratio, pCASL CBF ratio, and DSC PWI rCBF ratio were not significantly different (P=0.476). TTP showed the CBF ratios were not significantly different between the healthy side and diseased side in patients with severe intracranial atherosclerotic stenosis. ATT showed the correlations of pCASL CBF ratio and DSC PWI rCBF ratio were not affected by ATT. Conclusions e-pCASL with multiple-post labeling delay time and pCASL have good consistency with DSC PWI in the quantitative measurement of hypoperfusion pattern. As an accurate, simple, non-invasive, and repeatable technique, e-pCASL has good correlation with DSC PWI in the quantitative measurement of hypoperfusion pattern that is not affected by ATT.
Read full abstract