The foundational settlement and deformation of vertical storage tanks are crucial factors influencing their safe operation. To enable rapid deformation assessment of storage tanks, this paper combines point cloud data acquired through terrestrial laser scanning with relevant data processing algorithms to construct a digital twin (DT) model. This achieves high-precision automated detection of tank deformation, facilitating the digital transformation of deformation assessment and offering an integrated detection strategy. First, Euclidean distance clustering is applied to the point cloud, and the point density within clusters is statistically analyzed using a Gaussian distribution. This results in a collection of point clusters within one standard deviation, effectively filtering out outliers and noise points, which facilitates the rapid global registration of the point cloud. Second, in order to quickly segment tank point clouds in the scene, back propagation neural network classification learning based on principal component analysis information is used. The point cloud model is combined with the fitting information of slices to generate a DT model, whose deformation can be evaluated through comparison with appropriate storage tank specifications, taking radial deformation, tank inclination, and foundation settlement as indicators.