Thirteen elements including Al, Ag, As, Co, Cu, Cd, Cr, Fe, Mn, Ni, Se, Zn, and Pb were measured in 107 surface grab sediment samples and 175 segments of eight cores from Lakes Superior, Michigan, and Huron, using inductively coupled plasma mass spectrometry (ICP-MS). Concentrations in Ponar grabs vary considerably among metals and among locations, ranging from the highest median for Fe in Lake Superior (42,000 mg/kg) to the lowest median for Ag in the main Lake Huron (0.05 mg/kg). The inventory at coring sites ranged from 7 × 106 mg/m2 of Fe to 3 mg/m2 of Ag. The background concentrations were estimated from deeper core segments, and enrichment factors (EFs) were calculated with Fe or Al as the reference element. The results show that Al, Fe, Co, Cr, and Mn did not enrich, Ag, Cu, and Ni were present higher than expected from natural sources alone, while Pb, Cd, Se, Zn, and As have been enriched at most sites after European settlement in the region. EFs of most metals are higher for Lake Michigan than the other lakes. However, EF comparison among sampling sites revealed intrinsic problems of this approach for the assessment of human interference. Preliminary risk assessment, conducted by calculating risk quotients, revealed environmental risks of some metals in each lake; however, the results should be interpreted with caution because the approach used is considered to be conservative.
Read full abstract