PurposeDistribution network design involves a set of strategic decisions in supply chains because of their long-term impacts on the total logistics cost and environment. To incorporate a trade-off between financial and environmental aspects of these decisions, this paper aims to determine an optimal location, among candidate locations, of a new logistics center, its capacity, as well as optimal network flows for an existing distribution network, while concurrently minimizing the total logistics cost and gas emission. In addition, uncertainty in transportation and warehousing costs are considered.Design/methodology/approachThe problem is formulated as a fuzzy multiobjective mathematical model. The effectiveness of this model is demonstrated using an industrial case study. The problem instance is a four-echelon distribution network with 22 products and a planning horizon of 20 periods. The model is solved by using the min–max and augmented ε-constraint methods with CPLEX as the solver. In addition to illustrating model’s applicability, the effect of choosing a new warehouse in the model is investigated through a scenario analysis.FindingsFor the applicability of the model, the results indicate that the augmented ε-constraint approach provides a set of Pareto solutions, which represents the ideal trade-off between the total logistics cost and gas emission. Through a case study problem instance, the augmented ε-constraint approach is recommended for similar network design problems. From a scenario analysis, when the operational cost of the new warehouse is within a specific fraction of the warehousing cost of third-party warehouses, the solution with the new warehouse outperforms that without the new warehouse with respective to financial and environmental objectives.Originality/valueThe proposed model is an effective decision support tool for management, who would like to assess the impact of network planning decisions on the performance of their supply chains with respect to both financial and environmental aspects under uncertainty.