Many problems in quantum information theory can be formulated as optimizations over the sequential outcomes of dynamical systems subject to unpredictable external influences. Such problems include many-body entanglement detection through adaptive measurements, computing the maximum average score of a preparation game over a continuous set of target states, and limiting the behavior of a (quantum) finite-state automaton. In this work, we introduce tractable relaxations of this class of optimization problems. To illustrate their performance, we use them to: (a) compute the probability that a finite-state automaton outputs a given sequence of bits; (b) develop a new many-body entanglement-detection protocol; and (c) let the computer an adaptive protocol for magic state detection. As we further show, the maximum score of a sequential problem in the limit of infinitely many time steps is in general incomputable. Nonetheless, we provide general heuristics to bound this quantity and show that they provide useful estimates in relevant scenarios. Published by the American Physical Society 2024