Abstract
We consider two-player stochastic games played on a finite graph for infinitely many rounds. Stochastic games generalize both Markov decision processes (MDP) by adding an adversary player, and two-player deterministic games by adding stochasticity. The outcome of the game is a sequence of distributions over the graph states, representing the evolution of a population consisting of a continuum number of identical copies of a process modeled by the game graph. We consider synchronization objectives, which require the probability mass to accumulate in a set of target states, either always, once, infinitely often, or always after some point in the outcome sequence; and the winning modes of sure winning (if the accumulated probability is equal to 1) and almost-sure winning (if the accumulated probability is arbitrarily close to 1). We present algorithms to compute the set of winning distributions for each of these synchronization modes, showing that the corresponding decision problem is PSPACE-complete for synchronizing once and infinitely often and PTIME-complete for synchronizing always and always after some point. These bounds are remarkably in line with the special case of MDPs, while the algorithmic solution and proof technique are considerably more involved, even for deterministic games. This is because those games have a flavor of imperfect information, in particular they are not determined and randomized strategies need to be considered, even if there is no stochastic choice in the game graph. Moreover, in combination with stochasticity in the game graph, finite-memory strategies are not sufficient in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.