Accurate classification of patient complaints is crucial for enhancing patient satisfaction management in health care settings. Traditional manual methods for categorizing complaints often lack efficiency and precision. Thus, there is a growing demand for advanced and automated approaches to streamline the classification process. This study aimed to develop and validate an intelligent system for automatically classifying patient complaints using machine learning (ML) and natural language processing (NLP) techniques. An ML-based NLP technology was proposed to extract frequently occurring dissatisfactory words related to departments, staff, and key treatment procedures. A dataset containing 1465 complaint records from 2019 to 2023 was used for training and validation, with an additional 376 complaints from Hangzhou Cancer Hospital serving as an external test set. Complaints were categorized into 4 types-communication problems, diagnosis and treatment issues, management problems, and sense of responsibility concerns. The imbalanced data were balanced using the Synthetic Minority Oversampling Technique (SMOTE) algorithm to ensure equal representation across all categories. A total of 3 ML algorithms (Multifactor Logistic Regression, Multinomial Naive Bayes, and Support Vector Machines [SVM]) were used for model training and validation. The best-performing model was tested using a 5-fold cross-validation on external data. The original dataset consisted of 719, 376, 260, and 86 records for communication problems, diagnosis and treatment issues, management problems, and sense of responsibility concerns, respectively. The Multifactor Logistic Regression and SVM models achieved weighted average accuracies of 0.89 and 0.93 in the training set, and 0.83 and 0.87 in the internal test set, respectively. Ngram-level term frequency-inverse document frequency did not significantly improve classification performance, with only a marginal 1% increase in precision, recall, and F1-score when implementing Ngram-level term frequency-inverse document frequency (n=2) from 0.91 to 0.92. The SVM algorithm performed best in prediction, achieving an average accuracy of 0.91 on the external test set with a 95% CI of 0.87-0.97. The NLP-driven SVM algorithm demonstrates effective classification performance in automatically categorizing patient complaint texts. It showed superior performance in both internal and external test sets for communication and management problems. However, caution is advised when using it for classifying sense of responsibility complaints. This approach holds promises for implementation in medical institutions with high complaint volumes and limited resources for addressing patient feedback.
Read full abstract