Although diffusion-weighted imaging (DWI) with ultra-high b-values is reported to be advantageous in the detection of some tumors, its applicability is not yet known in biliary malignancy. Therefore, this study aimed to evaluate the impact of measured b = 1400 s/mm2 (M1400) and calculated b = 1400 s/mm2 (C1400) DWI on image quality and quality of lesion discernibility using a modern 3T MR system compared to conventional b = 800 s/mm2 DWI (M800). We evaluated 56 patients who had pathologically proven biliary malignancy. All the patients underwent preoperative or baseline 3T MRI using DWI (b = 50, 400, 800, and 1400 s/mm2). The calculated DWI was obtained using a conventional DWI set (b = 50, 400, and 800). The tumor-to-bile contrast ratio (CR) and tumor SNR were compared between the different DWI images. Likert scores were given on a 5-point scale to assess the overall image quality, overall artifacts, ghost artifacts, misregistration artifacts, margin sharpness, and lesion discernibility. Repeated-measures analysis of variance with post hoc analyses was used for statistical evaluations. The CR of the tumor-to-bile was significantly higher in both M1400 and C1400 than in M800 (Pa < 0.01). SNRs were significantly higher in M800, followed by C1400 and M1400 (Pa < 0.01). Lesion discernibility was significantly improved for M1400, followed by C1400 and M800 for both readers (Pa < 0.01). Using a 3T MRI, both measured and calculated DWI with an ultra-high b-value offer superior lesion discernibility for biliary malignancy compared to the conventional DWI.
Read full abstract