This study is concerned with the problem of reachable set estimation for linear systems with time-varying delays and polytopic parameter uncertainties. Our target is to find an ellipsoid that contains the state trajectory of linear system as small as possible. Specifically, first, in order to utilize more information about the state variables, the RSE problem for time-delay systems is solved based on an augmented Lyapunov-Krasovskii functional. Second, by dividing the time-varying delay into two non-uniformly subintervals, more general delay-dependent stability criteria for the existence of a desired ellipsoid are derived. Third, the integral interval is decomposed in the same way to estimate the bounds of integral terms more exactly. Fourth, an optimized integral inequality is used to deal with the integral terms, which is based on distinguished Wirtinger integral inequality and Reciprocally convex combination inequality. This can be regard as a new method in the delay systems. Finally, three numerical examples are presented to demonstrate the effectiveness and merits of the theoretical results.