The automotive field is undergoing significant technological advances, which includes making the next generation of autonomous vehicles smarter, greener and safer through vehicular networks, which are often referred to as Vehicle-to-Everything (V2X) communications. Together with V2X, centralized maneuver management services for autonomous vehicles are increasingly gaining importance, as, thanks to their complete view over the road, they can optimally manage even the most complex maneuvers targeting L4 driving and beyond. These services face the challenge of strictly requiring a high reliability and low latency, which are tackled with the deployment at orchestrated Multi-Access Edge Computing (MEC) platforms. In order to properly manage safety-critical maneuvers, these services need to receive a large amount of data from vehicles, even though the useful subset of data is often related to a specific context on the road (e.g., to specific road users or geographical areas). Decoding and post-processing a large amount of raw messages, which are then for the most part filtered, increases the load on safety-critical services, which should instead focus on meeting the deadlines for the actual control and management operations. On this basis, we present an innovative open-source, 5G & MEC enabled service, called Server Local Dynamic Map (S-LDM). The S-LDM is a service that collects information about vehicles and other non-connected road objects using standard-compliant messages. Its primary purpose is to create a centralized dynamic map of the road that can be shared efficiently with other services managing L4 automation, when needed. By doing so, the S-LDM enables these services to widely and precisely understand the current situation of sections of the road, offloading them from the need of quickly processing a large number of messages. After a detailed description of the service architecture, we validate it through extensive laboratory and pilot trials, involving the MEC platforms and production 5G networks of three major European network operations and two Stellantis vehicles equipped with V2X On-Board Units (OBUs). We show how it can efficiently handle high update rates and process each messages in less than few tenths of microseconds. We also provide a complete scalability analysis with details on deployment options, providing insights on where new instances should be created in practical 5G-based V2X scenarios.