Twelve Quarter Horses, 18 to 24 mo of age and having an average body weight of 460+/-12 kg, were randomly assigned to one of two exercise treatments (control and exercise) to study the effect of initiation of exercise training in young horses on vitamin K status. The control treatment consisted of hand-walking the horses 7 min/d and 5 d/wk for 180 d. Exercise consisted of the following treadmill exercise regimen: 2 min at 4.5 to 5.4 m/s, 3 min at 13.4 to 14.3 m/s, and 2 min at 4.5 to 5.4 m/s on 5 d/wk for 180 d. Both groups were allowed free access to brome grass hay (273 mg of phylloquinone/100 g) individually. Additionally, the exercise group was fed .45 kg of a grain-mix concentrate (40 mg of phylloquinone/100 g) on the days they were exercised. Jugular venous blood samples were collected at d 0, 30, 60, 90, 120, 150, and 180. Blood samples were analyzed for total serum osteocalcin and vitamin K status via the hydroxyapatite binding capacity of serum osteocalcin calculated as follows: Hydroxyapatite binding capacity of serum osteocalcin = [(total serum osteocalcin - serum osteocalcin following extraction of serum with hydroxyapatite)/total serum osteocalcin] x 100. All horses were killed with an overdose of sodium pentobarbital on d 180. Computed tomographic osteoabsorptiometry was used to measure relative bone density distribution on the surface of the distal radial carpal bone, proximal third carpal bone, and the distal third metacarpal condyle. Relative bone density distribution was measured in Hounsfield units and categorized as low-, medium-, and high-density bone corresponding to 800 to 1,199, 1,200 to 1,299, and 1,300 to 3,000 Hounsfield units, respectively. Carpal and metacarpophalangeal joints were assigned a score of 0 (normal) to 3 (severe) that reflected the presence and severity of joint lesions. Hydroxyapatite binding capacity of serum osteocalcin and serum osteocalcin were unchanged over the 180-d period in both groups. Exercised horses had a higher percentage of high density bone (P < .01) and a lower percentage of low density bone (P < .01) on the surface of the third metacarpal condyle and a higher cumulative gross lesion score (P < .01) in the metacarpophalangeal joint than controls. There were no differences between treatments in relative bone density distribution in the carpal bones, or cumulative gross lesion score of the carpal joints. No significant correlation was present between the serum measures, osteocalcin and hydroxyapatite binding capacity of serum osteocalcin, and the bone measures, relative bone density distribution and joint gross lesion score.
Read full abstract