We have isolated the serum response factor (SRF) homologue from two hydrozoans, the freshwater polyp Hydra vulgaris and the marine colonial Hydractinia echinata; we have termed the Hydra gene HvSRF and the Hydractinia gene HeSRF. The MADS-box of both genes is identical in sequence and more similar to SRFs of other organisms than to non-SRF MADS-box-containing proteins from other organisms. Within the N terminus of the predicted protein, a motif of 14 amino acids is nearly identical between Hydra and Hydractinia. This motif is absent from other known SRF sequences. In the adult Hydra polyp, SRF is predominantly expressed in cells of the interstitial cell (I-cell) lineage. Expression of SRF ceases when I-cells differentiate into nerve cells, nematocytes, or gland cells. In the course of sexual reproduction in Hydractinia, SRF is expressed in female germ cells. During embryogenesis, SRF transcripts are observed in all blastomeres. Later on, SRF expression is turned off in cells forming the ectodermal layer but further on is expressed in cells of the central cell mass, from which the endodermal epithelial cells and the I-cell lineage originate. Expression eventually becomes restricted to the I-cell lineage. We conclude that hydrozoan SRF is expressed in all these cells, which still have the property for differentiation. In adult Hydra, the abundance of SRF transcripts varies during the day. The pacemaker of this diurnal rhythm is the feeding regime. HvSRF expression decreases by 4 h after feeding and returns to the initial level 12 h after feeding. When feeding is stopped, the cycle of SRF expression persists through the first day when the animals are not fed. It has been shown that feeding partly synchronizes the cell cycle of the epithelial cells but not that of the I-cells. We suggest that the epithelial cells affect SRF expression in I-cells and thereby influence the decision of I-cells to enter a differentiation pathway.
Read full abstract