Prostate cancer is the most common cancer in men over 50 years old and the second leading cause of cancer death. Prostate-specific antigen (PSA) is widely used for the diagnosis and follow-up of prostate cancer. PSA, also called kallikrein 3, is a member of the human kallikrein-type serine protease family and circulates in the blood stream in the form of complexes with serum protease inhibitors and in free form. However, free PSA is also a heterogeneous mixture of different molecular PSA forms: proPSA, intact and clived mature forms. The clinical significance of these different forms is still unclear but their specific measurement in serum could improve the specificity of PSA for detecting cancer or predicting treatment outcome. Others kallikreins including kallikrein 2, 4, 11, 14 and 15 are also emerging as complementary markers to PSA for prostate cancer. Multiple detection of the different molecular forms of PSA, as well as of these kallikreins, in addition to total PSA, could significantly increase the diagnostic utility of PSA and may add prognostic value by bringing clinical information on the cancer progression.