BackgroundWnt-catenin signaling antagonists sclerostin and dickkopf-related protein-1 (Dkk-1) inhibit bone formation and are involved in the pathogenesis of postmenopausal osteoporosis (PO). However, the association between sclerostin and Dkk-1 and bone mineral density (BMD) in women with PO remains unclear.ObjectiveThis study aimed to determine the association between sclerostin and Dkk-1 and BMD, bone microarchitecture, and bone strength in PO.MethodsTrabecular bone specimens were obtained from the femoral heads of 76 Chinese women with PO who underwent hip arthroplasty for femoral neck fractures. Micro-computed tomography (Micro-CT) was used to assess the BMD and bone microarchitecture of the trabecular bone. Subsequently, a mechanical test was performed. Finally, sclerostin and Dkk-1 in the bone were measured by enzyme-linked immunosorbent (Elisa) assay. Serum ionized serum ionised calcium, propeptide of type 1 collagen, C-terminal β-telopeptide of type-1 collagen, sclerostin, and Dkk-1 were also detected.ResultsBone sclerostin was positively correlated with serum ionised calcium, serum sclerostin, BMD, bone volume/tissue volume (BV/TV), trabecular number (Tb.N), maximum compressive force, and yield strength (r = 0.32, 0.906, 0.355, 0.401, 0.329, 0.355, and 0.293, respectively, P < 0.05) and negatively correlated with age and trabecular separation (Tb.Sp) (r = − 0.755 and − 0.503, respectively, P < 0.05). Bone Dkk-1 was positively correlated with serum ionised calcium, serum Dkk-1, BMD, BV/TV, trabecular thickness, Tb.N, maximum compressive force, yield strength, and Young’s modulus (r = 0.38, 0.809, 0.293, 0.293, 0.228, 0.318, 0.352, 0.315, and 0.266, respectively, P < 0.05) and negatively correlated with age and Tb.Sp (r = − 0.56 and − 0.38, respectively, P < 0.05). Serum levels of sclerostin and Dkk-1 reflected the levels of sclerostin and Dkk-1 in the bone.ConclusionBone sclerostin and Dkk-1 were positively correlated with BMD in women with PO, and higher levels of bone sclerostin and Dkk-1 might predict better BMD, bone microarchitecture, and bone strength. The potential molecular mechanisms still require further study.