Obesity is correlated with the development of osteoporotic diseases. Gut microbiota-derived metabolite trimethylamine-n-oxide (TMAO) accelerates obesity-mediated tissue deterioration. This study was aimed to investigate what role TMAO may play in osteoporosis development during obesity.Mice were fed with high-fat diet (HFD; 60 kcal% fat) or chow diet (CD; 10 kcal% fat) or 0.2% TMAO in drinking water for 6 months. Body adiposis and bone microstructure were investigated using μCT imaging. Gut microbiome and serum metabolome were characterized using 16S rRNA sequencing and liquid chromatography-tandem mass spectrometry. Osteogenic differentiation of bone-marrow mesenchymal cells was quantified using RT-PCR and von Kossa staining. Cellular senescence was evaluated by key senescence markers p16, p21, p53, and senescence association β-galactosidase staining.HFD-fed mice developed hyperglycemia, body adiposis and osteoporosis signs, including low bone mineral density, sparse trabecular microarchitecture, and decreased biomechanical strength. HFD consumption induced gut microbiota dysbiosis, which revealed a high Firmicutes/Bacteroidetes ratio and decreased α-diversity and abundances of beneficial microorganisms Akkermansiaceae, Lactobacillaceae, and Bifidobacteriaceae. Serum metabolome uncovered increased serum L-carnitine and TMAO levels in HFD-fed mice. Of note, transplantation of fecal microbiota from CD-fed mice compromised HFD consumption-induced TMAO overproduction and attenuated loss in bone mass, trabecular microstructure, and bone formation rate. TMAO treatment inhibited trabecular and cortical bone mass and biomechanical characteristics; and repressed osteogenic differentiation capacity of bone-marrow mesenchymal cells. Mechanistically, TMAO accelerated mitochondrial dysfunction and senescence program, interrupted mineralized matrix production in osteoblasts.Gut microbial metabolite TMAO induced osteoblast dysfunction, accelerating the development of obesity-induced skeletal deterioration. This study, for the first time, conveys a productive insight into the catabolic role of gut microflora metabolite TMAO in regulating osteoblast activity and bone tissue integrity during obesity.