Acute kidney injury (AKI) is a severe loss of kidney function that results in patients' inability to appropriately excrete nitrogenous wastes and creatinine. Continuous haemodiafiltration (HDF) or haemofiltration (HF) are commonly used renal replacement therapies for people with AKI. Buffered dialysates and solutions used in HDF or HF have varying effects on acid-base physiology and several electrolytes. The benefits and harms of bicarbonate- versus lactate-buffered HDF or HF solutions for treating patients with AKI remain unclear. To assess the benefits and harms of bicarbonate- versus lactate-buffered solutions for HDF or HF for treating people with AKI. We searched the Cochrane Renal Group's Specialised Register to 6 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. We also searched the Chinese Biomedical Literature Database. All randomised controlled trials (RCT) and quasi-RCTs that reported comparisons of bicarbonate-buffered solutions with lactate-buffered solutions for AKI were selected for inclusion irrespective of publication status or language. Two authors independently assessed titles and abstracts, and where necessary the full text of studies, to determine which satisfied our inclusion criteria. Data were extracted by two authors who independently assessed studies for eligibility and quality using a standardised data extraction form. Methodological quality was assessed using the Cochrane risk of bias tool. Results were expressed as risk ratio (RR) or mean difference (MD) with 95% confidence intervals (CI). We identified four studies (171 patients) that met our inclusion criteria. Overall, study quality was suboptimal. There were significant reporting omissions related to methodological issues and potential harms. Outcome measures were not defined or reported adequately. The studies were small and lacked follow-up phases.Serum lactate levels were significantly lower in patients treated with bicarbonate-buffered solutions (4 studies, 171 participants: MD -1.09 mmol/L, 95% CI -1.30 to -0.87; I(2) = 0%). There were no differences in mortality (3 studies, 163 participants: RR 0.76, 95% CI 0.50 to 1.15; I(2) = 0%); serum bicarbonate levels (3 studies, 163 participants: MD 0.27 mmol/L, 95% CI -1.45 to 1.99; I(2) = 78%), serum creatinine (2 studies, 137 participants: MD -22.81 µmol/L, 95% CI -129.61 to 83.99; I(2) = 73%), serum base excess (3 studies, 145 participants: MD 0.80, 95% CI -0.91 to 2.50; I(2) = 38%), serum pH (4 studies, 171 participants: MD 0.01, 95% CI -0.02 to 0.03; I(2) = 70%) or carbon dioxide partial pressure (3 studies, 151 participants: MD -1.04, 95% CI -3.84 to 1.76; I(2) = 83%). A single study reported fewer cardiovascular events (RR 0.39, 95% CI 0.20 to 0.79), higher mean arterial pressure (10.25 mm Hg, 95% CI 6.68 to 13.82) and less hypotensive events (RR 0.44, 95% CI 0.26 to 0.75) in patients receiving bicarbonate-buffered solutions. One study reported no significant difference in central venous pressure (MD 2.00 cm H2O, 95% CI -0.7 to, 4.77). Total length of hospital and ICU stay and relapse were not reported by any of the included studies. There were no significant different between bicarbonate- and lactate-buffered solutions for mortality, serum bicarbonate levels, serum creatinine, serum base excess, serum pH, carbon dioxide partial pressure, central venous pressure and serum electrolytes. Patients treated with bicarbonate-buffered solutions may experience fewer cardiovascular events, lower serum lactate levels, higher mean arterial pressure and less hypotensive events. With the exception of mortality, we were not able to assess the main primary outcomes of this review - length of time in ICU, total length of hospital stay and relapse.