SERPINA1 is a well-studied serpin gene due to its dramatic impact on human health. Translation initiation at the main SERPINA1 start codon produces the only known alpha1-antitrypsin (AAT) isoform intended for secretion. AAT performs essential functions by inhibiting proteases and modulating immunity. However, SERPINA1 expression at the level of translation is not sufficiently studied. Here we hypothesize that the main SERPINA1 ORF can be alternatively translated, producing a non-secretory AAT isoform by either masking or excluding a signal peptide. We defined SERPINA1 long mRNA isoforms specific for prostate (DU145) and liver (HepG2) cell lines and studied their individual expression by in vitro assay. We found that all long transcripts produce both glycosylated secretory AAT-eGFP fusion protein and non-glycosylated intracellular AAT-eGFP (initiated from an alternative AUG-2 start codon), with the proportion regulated by the SERPINA1 5’-UTR. Both fusion proteins localize to distinct cellular compartments: in contrast to a fusion with the secretory AAT accumulating in the ER, the intracellular one exhibits nuclear-cytoplasmic shuttling. We detected putative endogenous AAT isoform enriching the nuclear speckles. ConclusionAlternative translation initiation might be a mechanism through which SERPINA1 expands the biological diversity of its protein products. Our findings open up new prospects for the study of SERPINA1 gene expression.
Read full abstract