Lithium-sulfur battery(LSB)’s commercial manufacturing has been mainly retarded by the “shuttle effect” and low electrical conductivity of polysulfides (LiPSs). Designing a cathode with hollow and hierarchically porous structures was expected to solve the above problems. Herein, a kind of TiN particles with the hierarchical hollow double-shelled structures was synthesized and applied to cathodes of LSB. The Fig-like hollow TiO2 particles (FHTiO2s) were firstly synthesized by the hard-template method. Subsequently, the Fig-like hierarchical hollow double-shelled TiN particles (FHTiNs) were synthesized by the template-free sequential transformation and separation approach (STSA). It was verified that the heating temperature and time were key parameters. Special Fig-like double-shell hollow structures could greatly increase the loading of S, and the excellent initial capacity of FHTiNs cathodes was up to 1159 mAh/g. On the one hand, the Fig-like framework in internal cavity and double-shell structures could promote the ultrahigh specific surface area, and the adsorption to LiPSs was improved by increasing active sites; On the other hand, the shuttle effect of LiPSs was weakened by the fig-like framework and double-shell structures, which slowed down the massive dissolution of sulfur in the electrolyte. As a result, the pleasant rate performance of FHTiNs cathodes was up to 400 mAh/g at 5C. This novel structures and synthesis method provided a new strategy for the designing of LSB cathodes.
Read full abstract