Abstract The purpose of this study is to diagnose mesoscale factors responsible for the formation and development of an extreme rainstorm that occurred on 20 July 2021 in Zhengzhou, China. The rainstorm produced 201.9 mm of rainfall in 1 h, breaking the record of mainland China for 1-h rainfall accumulation in the past 73 years. Using 2-km continuously cycled analyses with 6-min updates that were produced by assimilating observations from radar and dense surface networks with a four-dimensional variational (4DVar) data assimilation system, we illustrate that the modification of environmental easterlies by three mesoscale disturbances played a critical role in the development of the rainstorm. Among the three systems, a mesobeta-scale low pressure system (mesolow) that developed from an inverted trough southwest of Zhengzhou was key to the formation and intensification of the rainstorm. We show that the rainstorm formed via sequential merging of three convective cells, which initiated along the convergence bands in the mesolow. Further, we present evidence to suggest that the mesolow and two terrain-influenced flows near the Taihang Mountains north of Zhengzhou, including a barrier jet and a downslope flow, contributed to the local intensification of the rainstorm and the intense 1-h rainfall. The three mesoscale features coexisted near Zhengzhou in the several hours before the extreme 1-h rainfall and enhanced local wind convergence and moisture transport synergistically. Our analysis also indicated that the strong midlevel south/southwesterly winds from the mesolow along with the gravity-current-modified low-level northeasterly barrier jet enhanced the vertical wind shear, which provided favorable local environment supporting the severe rainstorm.
Read full abstract