Let γ \gamma denote Euler’s constant, and let \[ s n = ( 1 + 1 2 + ⋯ + 1 n − 1 ) − log n ( n ≥ 2 ) . {s_n} = \left ( {1 + \frac {1}{2} + \cdots + \frac {1}{{n - 1}}} \right ) - \log n\quad (n \geq 2). \] We prove by Ser’s formula for the remainder γ − s n \gamma - {s_n} that for all integers n ≥ 1 n \geq 1 and τ ≥ 2 \tau \geq 2 there are integers μ n , 0 , μ n , 1 , … , μ n , n {\mu _{n,0,}}{\mu _{n,1}}, \ldots ,{\mu _{n,n}} such that \[ μ n , 0 s τ + μ n , 1 s τ + 1 + ⋯ + μ n , n s τ + n = γ + O τ ( ( n ( n + 1 ) ( n + 2 ) ∙ ⋯ ∙ ( n + τ ) ) − 1 ) , {\mu _{n,0}}{s_\tau } + {\mu _{n,1}}{s_{\tau + 1}} + \cdots + {\mu _{n,n}}{s_{\tau + n}} = \gamma + {O_\tau }({(n(n + 1)(n + 2) \bullet \cdots \bullet (n + \tau ))^{ - 1}}), \] where the constant in O τ {O_\tau } depends only on τ \tau . The coefficients μ n , k {\mu _{n,k}} are explicitly given and are bounded by 2 3 n + τ − 1 {2^{3n + \tau - 1}} .