We consider the convex combinations , of a pair of sequences of real numbers and such that , converging to , and study the location of the limit inside the intervals , for every or for sufficiently large . We also investigate the same problem for the case of two corresponding sequences converging to . Among other results, we prove some, a bit, unexpected ones. Namely, for each , we determine the exact index at which the sequence changes the monotonicity, and we also determine the type of the monotonicity. A number of interesting remarks are also presented.