Disinfectants, such as bleaching powder, are widely employed in marine aquaculture worldwide to control the bacterial pathogens and eliminate antibiotic resistance genes (ARGs). Nevertheless, the rapid recovery of prokaryotic community compositions (PCCs) after disinfection may significantly influence the overall efficacy of disinfection. Presently, little is known about the rapid recovery mechanisms of PCCs and its impact on the removal of ARGs in seawater. In this study, 16S rRNA gene sequencing and metagenomic analysis were used to address the above concerns through simulating the disinfection process in aquaculture. The results showed that recovery of PCCs began within 16 h. The underlying mechanisms of the repaid recovery of PCCs were the synergistic interactions between microbes and the residues of disinfection-resistant bacteria (DRB). Disinfection resistance genes (DRGs) related to efflux pump serve as the primary molecular foundation providing DRB to resist disinfection. Among the 78 annotated ARGs, only 10 ARGs exhibited a significant decrease (P < 0.05) after 72 h, implying the ineffective removal of ARGs by bleaching powder. Furthermore, bacterial co-resistance to disinfectants and antibiotics was observed. Genome analysis of two highly resistant DRB from Pseuomonadaceae revealed that both DRB carried 16 DRGs, aiding the recovery of PCCs and the spread of ARGs. These findings provide novel insights in the mechanisms of the rapid recovery of PCCs and bacterial co-resistance to disinfectants and antibiotics, which can be crucial for the management of pathogens and antibiotic resistance in seawater.
Read full abstract