AbstractIn this study, UiO‐66 was employed for the first time as an adsorbent to separate phenolic acid analogues, specifically 4‐hydroxyisophthalic acid and salicylic acid, from impurities. Synthesized in‐house, UiO‐66 was shown to exhibit high selectivity towards 4‐HIPA/4‐HBA and SA/4‐HBA when a molar equivalent of acetic acid modulator to terephthalic acid was set at 44. The adsorption capacities for 4‐HBA, 4‐HIPA, and SA were determined to be 56.34, 55.02, and 60.34 mg/g, respectively. Furthermore, it was observed that after six regeneration cycles, the adsorption capacity for 4‐HBA remained nearly unchanged, whereas those for 4‐HIPA and SA decreased by 5.6% and 2.6%, respectively. FTIR and XPS analyses revealed that all three compounds were adsorbed at the same dominant Zr cluster site on UiO‐66, primarily through hydrogen bonding and electrostatic interaction. Dynamic adsorption experiments revealed that 4‐HBA was the first to elute, maintaining the residual contents of 4‐HIPA and SA below 0.1 wt%. Compared to traditional separation techniques, this paper provided a simple and effective method to purify industrial grade 4‐hydroxybenzoic acid.
Read full abstract