Material recycling and thermal treatment are the two most common recycling methods employed for plastic waste management. Thermal treatment for energy recovery is more widely applied compared with material recycling because the latter requires a high efficiency of separation and a high purity of products. Unfortunately, certain plastics like polyvinyl chloride (PVC) are unsuitable for thermal treatment because they contain additives like chloride (Cl−) that have adverse effects on refractory materials used in boilers. As a result of this, mixed plastic wastes containing PVC generally end up in landfills. PVC-bearing mixed plastics, however, remain valuable resources as championed by the United Nation Sustainable Development Goals (UN-SDGs): Goal 12 “Responsible production and consumption”, and their recycling after the removal of PVC is important. In this paper, recent studies (2012–2021) related to the separation of PVC from other types of plastics were systematically reviewed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 66 articles were selected, reviewed, and summarized. The results showed that various separation technologies conventionally applied to mineral processing—selective comminution, gravity separation, magnetic separation, electrical separation, and flotation—have been studied for PVC separation, and the majority of these works (>60%) focused on flotation. In addition, more advanced technologies including sorting and density-surface-based separation were introduced between 2019 and 2021.
Read full abstract