Abstract

This paper presents a one-step selective separation of polyvinyl chloride (PVC) from PVC/PET mixture based on hydrophilicity building on the PVC surface using H2O2/ultrasonication. After the combined treatment, the decrease of PVC contact angle (from 87.2° to 71.5°) is consistent with the increase in hydrophilic functional groups that is evidenced by Fourier transform infrared and X-ray photoelectron spectroscopy results on the PVC surface. The H2O2/ultrasonic treatment generates oxidizing agent and increases hydrophilicity on the PVC surface, which allows to selectively separate the treated PVC by its submerging on the reactor bottom. Meanwhile, the treated PET is easily floated off because it is not affected by the combined treatment and still maintains the hydrophobic surface. The combined treatment of H2O2 and ultrasonic irrigation obtains 100% purity and recovery of the PVC separation under the optimum conditions. The optimized separation conditions are H2O2 concentration 3%, ultrasonic irrigation time 30 min and temperature 30 °C, floating agent concentration 0.4 mg/L and intermittent mixing at 50 rpm. Reusing of H2O2 is also feasible to save cost and environmental benefits. The combination of ultrasonication and H2O2 is an effective and inexpensive method for PVC separation to improve plastic recycling quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call