The large surface area, excellent thermal stability and easy modification make microporous organic networks (MONs) good candidates in the field of gas chromatography (GC). Due to the limited species and highly conjugated networks of MONs, their applications are still in infancy and restricted. To accelerate their developments and to enrich their types in GC, here we report the first example of synthesizing alkyl MON and its capillary column for GC separation of position isomers. Linear 1,8-dibromooctane is used as the alkyl monomer instead of traditional aromatic ones to construct novel alkyl MON to decrease the inherent conjugated characteristic of MONs. The alkyl MON exhibits good thermal stability (up to 350°C), large surface area (1173m2g-1), and non-polar character, allowing good resolution for alkanes, alkyl benzenes, alcohols, ketones, and diverse position isomers, including dichlorobenzene, trichlorobenzene, bromotoluene, nitrotoluene, methylbenzaldehyde, and ionone with the limits of detection (0.003mgmL-1) and limits of quantitation of (0.10mgmL-1). The in situ growth-prepared alkyl MON column demonstrates remarkable duration time and precisions for the retention relative standard deviations, (RSDs%, intra-day, n=7), 0.06%-0.53% (intra-day, n=7), and 2.87%-10.59% (column-to-column, n=3). In addition, the fabricated alkyl MON-coated capillary column offers better resolution than three commercial GC columns for the resolution of methylbenzaldehyde, bromotoluene, and chlorotoluene isomers. This work reveals the practicability for synthesizing alkyl MONs and demonstrates their prospects for position isomers separation.
Read full abstract