As an important vehicle for moral education, the moral indicators of civics and political science textbooks are naturally some of the most important criteria for revising textbooks. However, the textbook text dataset has too much textual information, ambiguous features, unbalanced sample distributions, etc. To address these problems, this paper combines a novel data enhancement method to obtain classification results based on word vectors. Additionally, for the problem of unbalanced sample sizes, this paper proposes a network model based on the attention mechanism, which combines the ideas of SMOTE and EDA, and uses a self-built stop word list and synonym word forest to conduct synonym queries, achieve a few categories of oversampling, and randomly disrupt the sentence order and intra-sentence word order to build a balanced dataset. The experimental results also show that the data augmentation method used in this paper’s model can effectively improve the performance of the model, resulting in a higher boost in the F1-measure of the model. The model incorporating the attention mechanism has better model generalization compared to the one without the attention mechanism, as well as a significant advantage compared to the reference model in other settings. The experimental results show that, compared with the original text classifier, the scheme of this paper effectively improves the evaluation effect and the reliability design for teaching a civics course.