Ascidians, which are the closest phylogenetic relatives to vertebrates, lack a distinct pituitary gland, which is the major endocrine gland in vertebrates. Nevertheless, for the past 130 years, it has been debated that the ascidian neural complex (NC) is homologous to the pituitary. Of the three major components of the NC, the neural gland (NG) has mainly been thought to be the ascidian counterpart of the pituitary. Recently, however, the ciliated funnel, and not the NG, was postulated to be the adenohypophysis (AH) primordium because it is likely derived from oral ectoderm, and because the expression of several placodal genes is comparable to their expression in vertebrates. An extensive in silico survey of the Ciona intestinalis genome sequence revealed that genes encoding pituitary hormones are absent in ascidians. Under the circumstances, this thesis attempts to find a path that shows that the AH primordium is recognizable in the ascidian by revisiting molecular and developmental data from recent public resources on C. intestinalis, and through the use of advanced bio-imaging techniques. A putative Ciona genetic pathway, which was constructed by referring to data from mammals, shows that only a patchwork of the genetic network exists to achieve terminal differentiation of the AH endocrine cells in the Ciona genome. Re-annotation on glycoprotein hormone related proteins, a GPA2/ARP and two GPB5/BRP ones previously reported, reveals that the GPA2 locus contains two splicing variants, and one variant likely formed a three-dimensional conformation similar to that of human GPA2. No clone of the GPB5/BRP1 locus has been isolated, and another candidate, BRP2, is unlikely to be a GPB5. Next, I argued a possibility that endocrine activities of Ciona species could be specialized in association with its short generation time, and I suggest that not only Ciona species but also other ascidians should be studied in order to understand ascidian endocrinology. Confocal images of the stages of tailbud development reconfirmed the presence of an oral ectoderm placode, and I propose to update the stomodeum development by adding descriptions of a folded structure of the stomodeum and deeply positioned opening of the sensory vesicle. Finally, YFP expression driven by Ci-Six3 promoter demonstrated a boundary between the pharyngeal endoderm and other ectodermal and neuroectodermal tissues around the ciliated funnel. These updates on the ascidian model, which complement other lower chordates and vertebrates, shed light on the evolutionary origin of the pituitary primordium.
Read full abstract