Three tree-killing bark beetles belonging to the genus Tomicus, Tomicus yunnanensis, Tomicus brevipilosus and Tomicus minor (Coleoptera; Curculionidae, Scolytinae), are serious wood-borers with larvae feeding on the phloem tissues of Pinus yunnanensis. The three Tomicus beetles, in some cases, coexist in a same habitat, providing a best system for exploring the conservation and divergence of reproductive genes. Here, we applied comparative transcriptomics and molecular biology approaches to characterize reproductive-related genes in three sympatric Tomicus species. Illumina sequencing of female and male reproductive systems and residual bodies generated a large number of clean reads, representing 185,920,232 sequences in T. yunnanensis, 169,153,404 in T. brevipilosus and 178,493,176 in T. minor that were assembled into 32,802, 56,912 and 33,670 unigenes, respectively. The majority of the genes had detectable expression in reproductive tissues (FPKM >1), particularly those genes in T. brevipilosus accounting for 76.61 % of the total genes. From the transcriptomes, totally 838 genes encoding 463 detoxification enzymes, 339 chemosensory membrane proteins and 36 ionotropic glutamate receptors (iGluRs) were identified, including 622 reproductive tissue-expressed genes. Of these, members of carboxylesterases (COEs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and iGluRs were highly conserved in gene numbers and sequence identities across three Tomicus species. Further, expression profiling analyses revealed a number of genes expressed in reproductive tissues and the diverse expression characteristics in these beetles. The results provide evidence for the conservation and differences of reproductive genes among three sympatric closely related beetles, helping understand their different reproductive strategies and the maximization of the reproductive success.