Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with social interaction and restricted, repetitive patterns of behavior. Altered sensory processing and perception are consideredcharacteristics of ASD. Sensory processing differences (SPDs) are commonly observed in individuals with ASD, leading to atypical responses to sensory stimuli.SPDs refer to the way in which individuals receive, process, and respond to sensory information from the environment. People with SPDs may be hypersensitive (over-reactive) or hyposensitive (under-reactive) to sensory input, or they may experience fragmented or distorted perceptions. These differences can make it difficult for individuals with SPDs to filter out irrelevant sensory information, and to integrate sensory information from different sources. This study intends to investigate the underlying mechanisms contributing to SPDs in individuals with autism and determine the effectiveness of sensory-based therapies in addressing these challenges. The literature suggests that altered neural pathways, sensory gating dysfunction, and atypical sensory modulation contribute to SPDs in individuals with ASD. Assistive technology, environmental changes, and sensory-based interventions like sensory integration therapy (SIT) have all shown promise in improving sensory functioning and reducing associated behavioral issues. However, further research is needed to improve our understanding of sensory processing in autism and to optimize interventions for individuals with ASD.
Read full abstract