Lower-limb rehabilitation exoskeletons offer a transformative approach to enhancing recovery in patients with movement disorders affecting the lower extremities. This comprehensive systematic review delves into the literature on sensor technologies and the control strategies integrated into these exoskeletons, evaluating their capacity to address user needs and scrutinizing their structural designs regarding sensor distribution as well as control algorithms. The review examines various sensing modalities, including electromyography (EMG), force, displacement, and other innovative sensor types, employed in these devices to facilitate accurate and responsive motion control. Furthermore, the review explores the strengths and limitations of a diverse array of lower-limb rehabilitation-exoskeleton designs, highlighting areas of improvement and potential avenues for further development. In addition, the review investigates the latest control algorithms and analysis methods that have been utilized in conjunction with these sensor systems to optimize exoskeleton performance and ensure safe and effective user interactions. By building a deeper understanding of the diverse sensor technologies and monitoring systems, this review aims to contribute to the ongoing advancement of lower-limb rehabilitation exoskeletons, ultimately improving the quality of life for patients with mobility impairments.
Read full abstract