We report on the development of a flexible 2D optical fiber-based pressure sensing surface suitable for biomedical applications. The sensor comprises of highly-sensitive Fiber Bragg Grating elements embedded in a thin polymer sheet to form a 2x2 cm(2) sensing pad with a minimal thickness of 2.5mm, while it is easily expandable in order to be used as a building block for larger surface sensors. The fabricated pad sensor was combined with a low physical dimension commercially available interrogation unit to enhance the portability features of the complete sensing system. Sensor mechanical properties allow for matching human skin behavior, while its operational performance exhibited a maximum fractional pressure sensitivity of 12 MPa(-1) with a spatial resolution of 1x1cm(2) and demonstrated no hysteresis and real time operation. These attractive operational and mechanical properties meet the requirements of various biomedical applications with respect to human skin pressure measurements, including amputee sockets, shoe sensors, wearable sensors, wheelchair seating-system sensors, hospital-bed monitoring sensors.
Read full abstract