Prostate cancer (PCa) is a common and deadly disease in men. It is often diagnosed at advanced stages, at which point patients are treated mainly with docetaxel (DTX), which is effective but limited by resistance and side effects. Overactivation of the transcription factors NF-κB and STAT-3 plays a critical role in the development, progression, and chemoresistance of PCa. In this regard, the blockade of NF-κB with pentoxifylline (PTX) or STAT-3 with Stattic (STT) is known to increase the sensitivity of tumor cells to chemotherapy in both in vitro and in vivo models. We investigated whether simultaneous blockade with PTX and STT increases the efficacy of the DTX treatment in inducing apoptosis in metastatic castration-resistant PCa DU-145 cells. Our results showed that the combination of PTX + STT led to higher levels of apoptosis, regardless of whether or not DTX was present in the treatment. Determining caspases and ΔΨm indicates that the intrinsic caspase pathway of apoptosis is principally favored. In addition, this combination inhibited proliferation and colony formation and arrested the cell cycle in the G1 phase. These results indicate that the combination of the PTX + STAT-3 inhibitor could potentiate DTX effectively, opening the possibility of effective treatments in PCa.
Read full abstract