Connected–automated vehicle (CAV) technologies are likely to have significant effects not only on how vehicles operate in the transportation system, but also on how individuals behave and use their vehicles. While many CAV technologies—such as connected adaptive cruise control and ecosignals—have the potential to increase network throughput and efficiency, many of these same technologies have a secondary effect of reducing driver burden, which can drive changes in travel behavior. Such changes in travel behavior—in effect, lowering the cost of driving—have the potential to increase greatly the utilization of the transportation system with concurrent negative externalities, such as congestion, energy use, and emissions, working against the positive effects on the transportation system resulting from increased capacity. To date, few studies have analyzed the potential effects on CAV technologies from a systems perspective; studies often focus on gains and losses to an individual vehicle, at a single intersection, or along a corridor. However, travel demand and traffic flow constitute a complex, adaptive, nonlinear system. Therefore, in this study, an advanced transportation systems simulation model—POLARIS—was used. POLARIS includes cosimulation of travel behavior and traffic flow to study the potential effects of several CAV technologies at the regional level. Various technology penetration levels and changes in travel time sensitivity have been analyzed to determine a potential range of effects on vehicle miles traveled from various CAV technologies.