Increased excitability of superficial laminae of the spinal cord may contribute to the pathological pain consequent to peripheral nerve injury. Among several mechanisms that may be responsible for this occurrence is upregulation of receptors for glutamate in the spinal cord. To explore this possibility, we investigated changes in AMPA receptors in substantia gelatinosa of rats after section of the sciatic nerve. Immunofluorescence was performed on sections from the fourth lumbar segment. Quantitative analysis of digitally captured images suggested that staining for an antibody to a sequence shared by GluR2 and GluR3 (GluR2/3) was increased on the side ipsilateral to the lesion. To determine whether antigen accumulation was at synaptic sites and to probe whether it was selective for primary afferent terminals, we performed electron microscopy on immunogold-labelled material. Gold particles coding for GluR2/3 subunits were counted from synaptic active zones of glomerular terminals in substantia gelatinosa that originate from small calibre afferent fibres, and from active zones of terminals of probable intrinsic origin. Counts were significantly increased on the side ipsilateral to the lesion only at synapses of primary afferent terminals. These results document selective upregulation of receptor protein at the synapse. This upregulation may contribute to the increased sensitivity of dorsal horn neurons following peripheral nerve injury.