BackgroundDrug resistance remains a significant obstacle to Acute myeloid leukemia (AML) successful treatment, often leading to therapeutic failure. Our previous studies demonstrated that Glioma-associated oncogene-1 (GLI1) reduces chemotherapy sensitivity and promotes cell proliferation in AML cells. GANT61, an inhibitor of GLI1, emerges as a promising candidate in AML treatment. This study aims to explore the effects of the combination of GANT61 and Adriamycin (ADR) on AML cells resistance and elucidate the mechanisms through which GANT61 may potentiate the sensitivity of AML cells to ADR.MethodsAML cell lines and AML primary cells were studied to evaluate effects and mechanisms of GANT61. Flow cytometry assays were used to verify apoptosis. Cell Counting Kit-8 (CCK-8) and EDU+ staining were used to observe changes in cell viability and the cytotoxic effect to different drugs. The transcriptomic profiles of HL-60/ADR cells with or without GANT61 treatment were compared via RNA-Seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and Gene Set Enrichment Analysis (GSEA) were performed for differentially expressed genes (DEGs) to reveal the underlying mechanisms of GANT61 in AML cells. GLI1, BCL2, Bax protein and mRNA expression levels were assessed by Western blot and Real-time polymerase chain reaction (RT-PCR).ResultsOur studies found that the combination of GANT61 and ADR synergistically inhibits proliferation while enhancing apoptosis in HL-60/ADR cells, and does not significantly exacerbate myelosuppression. Mechanistically, GSEA revealed enrichment of the gene set associated with the KEGG term “Apoptosis” and “Lysosome” in GANT61 treated cells. Meanwhile, “Apoptosis” was identified as the third most relevant pathway enriched by lysosomal DEGs, and BCL2 expression showed a negative correlation with these lysosomal DEGs in AML patients. RT-PCR and Western blot analysis disclosed that GANT61 significantly restrained BCL2 expression in AML cells. Lastly, we proved that venetoclax, a BCL2 inhibitor, co-treatment with GANT61 improved ADR sensitivity in HL-60/ADR cells.ConclusionsGANT61 effectively reversed ADR resistance in HL-60/ADR cells by upregulating lysosome activities and downgrading BCL2 expression, providing a new treatment strategy with acceptable toxicity for AML-resistant patients.
Read full abstract