AbstractSystems of conservation laws admitting extensions, such as entropy density/flux functions, generate related systems obtained by exchanging the extension with one of the constituent equations. Often if not always, the smooth solutions of the two systems coincide, and weak solutions of one system containing only small discontinuities are approximate weak solutions of the other. The adiabatic approximation for the Euler system illustrates the utility of this procedure.Such an exchange of conserved quantities preserves hyperbolicity and genuine non‐linearity in the sense of Lax. On the other hand, the topological structure of the shock locus of a point in phase space and the solvability of Riemann problems in the large can be strongly affected. A discussion of when and how this occurs is given here.In this paper the exchange of conserved quantities is conveniently described by a simple homotopy in an extended version of the usual ‘symmetric variables’. A dynamical system in phase space is constructed, the trajectories of which describe the Hugoniot locus of a fixed point in phase space at each state of the homotopy. The appearance of critical points for this dynamical system is identified with the alteration of the topological structure of the Hugoniot locus by the exchange of conserved quantities. Copyright © 2001 John Wiley & Sons, Ltd.