<p style="text-align:justify">The study examines the effectiveness of employing semiosis in the teaching and learning of the Quadratic Equation. The first goal is to compare results of De Saussure and Peirce models within the semiotic theory. The second goal is to determine the commonest effective semiotic objects student teachers mostly employ to solve for the roots in quadratic equations. This research method was mixed methods concurrent and adopted both quantitative and qualitative approach. The instruments for the study were teacher-made tests and interview guide structured on the likert scale. In the teacher-made tests, two sets of twenty questions were set and distributed to the respondents. The sets of questions were similar and each twenty questions were based on De Saussure and Peirce Semiotic Models. The analyses employed both quantitative and qualitative. In the quantitative analysis, three categorical <em>independent variables </em>were fixed on and Pierre and De Saussaure models, objects of Pierre and De Saussaure models, and diachronicity, trichronicity, categorization and quadratic equations, after satisfying normality and independent assumptions of t-test and ANOVA techniques. The qualitative analysis with ensured anonymity, confidentiality and privacy of respondents and transcribed responses from semi-structured interview guide. The results of the commonest semiotic objects improved significantly classroom interactions with Peirce model than with De Saussure model. They perceived the Peirce model as being broader, comprehensive, universal and ICT-compliant. We therefore recommended further quasi-experimental studies on semiotic objects to improve upon the use of cultural objects.</p>