The probability that a configuration of a physical system reacts, or transitions from one metastable state to another, is quantified by the committor function. This function contains richly detailed mechanistic information about transition pathways, but a full parametrization of the committor requires the construction of a high-dimensional function, a generically challenging task. Recent efforts to leverage neural networks as a means to solve high-dimensional partial differential equations, often called "physics-informed" machine learning, have brought the committor into computational reach. Here, we build on the semigroup approach to learning the committor and assess its utility for predicting dynamical quantities such as transition rates. We show that a careful reframing of the objective function and improved adaptive sampling strategies provide highly accurate representations of the committor. Furthermore, by directly applying the Hill relation, we show that these committors provide accurate transition rates for molecular systems.