It is due to the modularity they provide that results for cascaded systems have proved their utility in numerous control applications as well as in the development of general control techniques based on “adding integrators”. Nevertheless, the standing assumptions in most of the present literature on cascaded systems is that, when decoupled, the subsystems constituting the cascade are uniformly globally asymptotically stable (UGAS). Hence existing results fail in the more general case when the subsystems are uniformly semiglobally practically asymptotically stable (USPAS). This situation is often encountered in control practice, e.g. in control of physical systems with external perturbations, measurement noise, unmodelled dynamics, etc. After giving a rigorous framework for the analysis of such stability properties, this paper generalizes previous results for cascades by establishing that, under a uniform boundedness condition on its solutions, the cascade of two USPAS systems remains USPAS. An analogous result is derived for uniformly semiglobally asymptotically stable (USAS) systems in cascade. Furthermore, we show the utility of our results in the PID control of mechanical systems affected by unknown non-dissipative forces and considering the dynamics of the DC motors.