In this paper, we study the semidiscrete mixed finite element scheme and construct a two‐grid algorithm for the two‐dimensional time‐dependent Schrödinger equation. We analyze error results of the mixed finite element solution in ‐norm by some projection operators. Then, we propose a two‐grid method of the semidiscrete mixed finite element. With this method, the solution of the Schrödinger equation on a fine grid is reduced to the solution of original problem on a much coarser grid together with the solution of two elliptic equations on the fine grid. We also obtain the error estimate of two‐grid solution with exact solution in ‐norm. Finally, a numerical experiment indicates that our two‐grid algorithm is more efficient than the standard mixed finite element method.
Read full abstract