Abstract

A semidiscrete mixed finite element approximation to parabolic initial-boundary value problems is introduced and analyzed. Superconvergence estimates for both pressure and velocity are obtained. The estimates for the errors in pressure and velocity depend on the smoothness of the initial data including the limiting cases of data in \(L^2\) and data in \(H^r\), for \(r\) sufficiently large. Because of the smoothing properties of the parabolic operator, these estimates for large time levels essentially coincide with the estimates obtained earlier for smooth solutions. However, for small time intervals we obtain the correct convergence orders for nonsmooth data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.