AbstractThe Euclidean group E(3) is the noncompact, semidirect product group E(3)≅ℝ3⋊SO(3). It is the Lie group of orientation-preserving isometries of three-dimensional Euclidean space. The Euclidean algebra 𝔢(3) is the complexification of the Lie algebra of E(3). We embed the Euclidean algebra 𝔢(3) into the simple Lie algebra $\mathfrak {sl}(4,\mathbb {C})$ and show that the irreducible representations V (m,0,0) and V (0,0,m) of $\mathfrak {sl}(4,\mathbb {C})$ are 𝔢(3)-indecomposable, thus creating a new class of indecomposable 𝔢(3) -modules. We then show that V (0,m,0) may decompose.
Read full abstract