Buildings can be designed to limit the earthquake-induced damage to members that can easily be repaired. Self-centering moment-resisting frames can be used as effective structural systems for this purpose. Self-centering moment-resisting frames with prestressed cables are able to return the structure to its original position after the earthquake. The internal forces in self-centering moment-resisting frames are transferred between the beam and the column by post-tensioned cables. As a main member of self-centering connections, prestressed cables play a significant role in such systems. Cable tension decreases over time due to the effect of stress relaxation on the performance of the system. Stress relaxation is a time-dependent phenomenon causing stress reduction over time in the members prestressed at a constant strain. Therefore, the effect of stress relaxation on the performance of self-centering moment-resisting frames can be significant. In this article, after simulating and validating a moment-resisting frame with self-centering connections, stiffness and moment–rotation hysteresis diagrams were analyzed after 0, 1, 5, 10, and 20 years of cable prestressing. According to the results, two equations were presented to estimate the reduction in the connection stiffness and dissipated energy by the system based on prestressing level and the time after prestressing. The proposed equations could be used to model semi-rigid connections.
Read full abstract