For Orthogonal Frequency Division Multiplexing (OFDM) and other communication systems, many estimating approaches have been developed to estimate the channel state information and lower the Bit Error Rate (BER). These estimating methods, however, are still subject to the influence of large peak powers compared to average powers. Reduced computational complexity is one of the most significant factors to consider while developing a new estimate algorithm. This study aims to provide a novel design of the Packet-Discrete Wavelet Transform (P-DWT) algorithm for channel estimation in wireless OFDM instead of the fast Fourier transform (FFT). It is presented to retrieve the code of a spread spectrum signal and transmitted data bits, and it is compared to particle swarm optimization PSO and least mean square (LMS) optimization. The suggested approach reduces the computing cost of DWT by recognizing the Packet Wavelet Transform (PWT) coefficients and local points, findings utilizing P-DWT channels generated from both models and measurements show that the proposed technique outperforms pilot-based channel estimation in terms of bit error rate under sparseness conditions BER. Moreover, as compared to typical semi-blind approaches, the estimation accuracy is enhanced while computing cost is reduced.